Pulsed electromagnetic fields (PEMFs) have been used to treat almost every conceivable human health issue. This includes illness, pain, or malady, including many inflammatory diseases such as arthritis or psoriasis.
PEMF therapy has been associated with pain reduction, and accelerated healing. PEMFs exert these effects by regulating processes. These processes involve inflammation and autoimmune diseases, among other biologic actions.
Inflammation is a cascade of physiological processes instigated by the body. The goal is to repair cellular damage in tissues with good blood supply. Furthermore, it aids in restoring the tissue to its normal function.
Characteristic signs and symptoms that accompany inflammation include:
– redness generated by increased blood flow,
– heat generated by the metabolism of leukocytes and macrophages recruited to the damaged site,
– swelling due to edema, and
– pain caused by the production of pro-inflammatory prostaglandins.
Inflammation is the net result of a cascade of biologic processes. It is generated and supported by the interaction of a number of immune cell types. This includes lymphocytes, macrophages and neutrophils. Furthermore it helps with other cell types. These include fibroblasts, endothelial cells and vascular smooth muscle cells playing a regulatory role in the cascade.
Basically, inflammation is your body trying to heal itself from an injury or other disruption.
While inflammation is a necessary and beneficial process, its intensity during the initial acute phase can be abnormally exaggerated, and often persists longer than necessary, developing into chronic inflammation.
Chronic inflammation is associated with dysfunction of one or more parts of the immune system and leads to the ongoing tissue damage found in diseases like tendinitis, arthritis or psoriasis. Chronic inflammation is also a cause of cancer and Alzheimer’s disease, among many other disease conditions.
The various cell types and metabolic pathways that generate inflammation provide numerous targets for therapies aimed at controlling inflammation in the acute phase and in preventing progression to chronic inflammation. Inflammation can be initiated by many causes, and knowing and understanding the nature of the cause is important in designing therapeutic approaches.
In bacterial infections, early infiltration of the affected tissues by polymorphonuclear neutrophils (PMNs), a type of white blood cell, is followed by the arrival of T cells, an event that is required to kill bacteria. When this circumstance occurs, eliminating T cells can delay or stop healing. In trauma-induced injury, T cells are less important for healing tissue damage, and may be harmful if present for long periods. In this case early elimination of T cells in the acute phase of inflammation could minimize the unwanted effects of inflammation, accelerate healing, and reduce the risk of chronic inflammatory disease. With chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and chronic tendinitis, persistence of the disease state depends on the presence of T cells. Here, removing T cells would be a favorable approach of therapy for these and similar chronic conditions.
T cells are a major regulator of the inflammatory cascade. Research has shown that PEMFs can induce the appropriate death of T lymphocytes, by actions on T cell membranes and key enzymes in cells. For example, PEMFs have been found to affect ion flow through specific cell membrane channels, including those for sodium, potassium and calcium, that positively affect these enzymes. These appropriate effects help with reducing chronic inflammation.
Normal cells are not usually impacted by magnetic fields. Compromised cells, called meta-stable cells, are more likely to be impacted. This means that PEMFs have more impact in circumstances where there is imbalance in tissues or cells, i.e. where there is pathology or chronic inflammation. Where homeostasis in the body is robust, PEMFs, especially weaker PEMFs, are unlikely to have effects. For example, activation of the T cell receptor, such as happens with PEMFs, also activates various processes in the cell that within five minutes after removing the activating signal, these activated processes return to normal levels.
Significant changes occur in other white blood cells called lymphocytes, from both low intensity, low-frequency PEMFs and even DC/permanent magnetic fields. PEMFs interact with cellular systems in often unexpected ways. This means that increasing frequency and or intensity does not always produce a one-to-one change in reaction intensity.
PEMFs inhibit growth and the natural death of unwanted lymphocytes that decreases inflammation. The PEMF inhibition of lymphocytes and then inflammatory processes appears to be most obvious 48 and 72 hours after PEMF treatment and then the PEMF effect seems to disappear. This indicates that the effects of PEMFs can work well with other natural treatments.
PEMF use for inflammation needs to be optimized so that exposure will lead to long-lasting, therapeutically relevant outcomes. Pulse-burst-modulated higher frequency fields seem to be much more effective than other frequency signals, and therefore produce improved therapeutic outcomes. While particular types of signals may be most effective, a positive response is often seen to various kinds of magnetic stimuli. There appear to be similar effects on lymphocytes using pulsed bone healing fields, versus sinusoidal power line frequency fields.
Pulsed PEMFs with intensities from 5-25 MilliTesla had no effects on normal T cells. This means there is no apparent damage to normal lymphocytes. Inflammatory T cells produce interleukin-2 (IL-2), which stimulates growth of T cells. When IL-2 levels are high enough, it increases desired early elimination of these chronic inflammatory cells. Cells exposed to pulsed PEMFs can make up to a threefold increase in IL-2.
There appear to be PEMF intensity windows, but these have not been well defined. Frequency windows have been found to vary across different types of tissue cells in the body. The frequency ranges appear to be quite narrow for bone cells. For lymphocytes the frequency windows seem to be broader. Even 5-100 hertz, 0.15 mT signals modulate calcium flux in lymphocytes, 50 Hz PEMFs having the greatest effect. Frequency fields, combined with parallel static magnetic fields have also been found to have action.
It is important to know that PEMFs affect all lymphocytes, including B cells and T cells and other human lymphoid cell lines.
PEMF therapy specifically targets cells that are meta-stable as a consequence of disease or other ongoing therapies. Thus, PEMFs can be an important cellular therapy in many diseases, including cancer, psoriasis, wound healing, and bacterial infections because of their effects on reducing chronic inflammation. It is important that normal homeostatically stable cells are not harmed by PEMFs, allowing other treatments to be more effective without proportional increases in side effects.
In chronic inflammatory diseases, cells are characteristically maintained in meta-stable states, as a consequence of cytokine secretions and other stressors associated with the disease. In these cases, PEMFs can work as a stand-alone anti-inflammatory therapy. Even weak, low-frequency PEMFs induce apoptosis in activated T cells, thereby reducing chronic inflammation without negatively affecting acute inflammation.
Overall, PEMF is an ideal therapy for both acute and chronic inflammation and pain conditions due to the way that it interacts with our biology on a cellular level. By correcting physiological imbalances pain is reduced in the short term while long term healing and recovery is optimized.
Pain is both normal and necessary in acute situations. The pain you feel is a message from your body to your brain. It signals your brain to send help. It’s only after this that reduction occurs.
Acute inflammation is a physiological response to cell damage. It initiates from the exact location of the problem. In addition to being felt through pain sensations, this inflammation is often visible through redness, swelling and heat.
Acute inflammation makes your blood vessels dilate. It increases blood flow, sending white blood cells to the injury site to aid in healing. Certain chemicals are released to call immune cells, hormones and nutrients to action. All of this promotes the healing process, and as the body heals, inflammation is reduced.
Chronic inflammation, on the other hand, means that there is a steady, low-level of inflammation in the body. This holds true even when there’s no obvious injury or infection. There’s still a lot unknown about chronic inflammation and what causes it. However, research has shown that it can lead to a wide range of health issues, including chronic pain. When the immune system is activated with nothing to heal, those white blood cells can begin attacking healthy organs, tissues and cells.
Chronic pain is a major health issue that can take a toll on daily life. One in four adults experiences some form of pain at any given moment. Furthermore, 17% of people in the US aged fifteen or older deal with chronic pain that disrupts their daily life. Chronic pain can be responsible for missed work, inability to perform routine daily tasks or participate in recreational activities, and it can be a source of serious emotional distress.
The default treatments for management of chronic pain are often medications, surgical procedures, or physical therapy. Unfortunately, these treatments are often ineffective, and sometimes dangerous.
Medications are simply covering the pain, not addressing the actual problem. And there are some serious side effects that can occur, including permanent damage to your kidneys or liver, stomach bleeding, and addiction.
The risks of complications with surgery are great, and I’ve seen far too many patients come to me after surgical procedures have failed. Physical therapy can be expensive and time-consuming; while it can be a good short-term solution for an acute problem, it’s not practical for treating chronic conditions.
Other alternative treatments, like chiropractic care and acupuncture, can provide some relief, but the problem is still there. When the treatment wears off, the pain returns, sending you back for treatment again and again.
Damaged nerve networks stuck in a constant state of inflammation send pain messages to your brain, which sends help that can actually perpetuate the pain. PEMF therapy calms those nerves, finally allowing them to recover.
The majority of pain sources treated with PEMF therapy are musculoskeletal disorders such as arthritis, sprains or strains, factures, osteoporosis, neuralgias, neuropathies, and many more. While inflammation is crucial to the healing process, when the body overcompensates tissue swelling (edema) can cause pain and delayed healing.
With soft tissue and musculoskeletal issues, as well as post-traumatic wounds (such as after surgery), edema reduction has to occur to speed healing and achieve pain reduction. PEMFs change the local tissue where the pain begins, thus resulting in a reduction of pain. Studies have shown these tissue changes in numerous conditions, including acute ankle sprains, whiplash injuries, and chronic wound repair (Jerabek).
Pain is communicated through nerve signals from the point of origin to the brain. Often, with more severe or chronic pain, this pain “centralizes” in the brain, so PEMF treatment to the brain is the best option. Pain can also be transferred to other parts of the body, so determining the actual source can be tricky. It’s important to work with a knowledgeable practitioner to establish the cause and the source of the pain to set-up the most effective treatment protocol.
PEMFs heal tissues deep within the body when the correct intensity is used at the source of the pain. In PEMF therapy, low frequency pulses of electromagnetic stimulation is used to relieve pain and heal damaged tissues. These pulses activate energy at the cellular level to stimulate natural repair processes.
Adenosine is a molecule that has been called a “guardian angel” in human disease (Borea). Working through the adenosine receptor (AR), adenosine plays a key role in controlling inflammation.
PEMFs stimulate A2A receptors which increases production of adenoisine. A2A receptors have a complex relationship with immune and inflammatory processes. Under normal conditions, acute inflammation-producing molecules naturally stimulate the A2A receptor to prevent or decrease inflammation. Low adenosine production means these receptors don’t work as they should, and chronic inflammation can result.
PEMFs increase the ARs, allowing for more efficient functioning of adenosine, which produces a larger anti-inflammatory action than medications, without side effects, desensitization, or receptor resistance.
Neutrophils, which make up 40 to 70 percent of white blood cells in most mammals, have an abundance of A2A receptors in their membranes. These neutrophils are called to the site of inflammation very quickly after trauma. In a lab study, PEMFs of the right intensity applied at the surface of neutrophils have significantly increased the binding of adenosine to the A2A receptor. (Massari) This research clearly showed that having the proper intensity can be critical to effectively reducing inflammation anywhere in the body.
By reducing inflammation, PEMFs are an effective alternative treatment for both acute and chronic pain.
In acute situations, treatment with PEMFs can speed tissue healing and reduce pain quickly, without the potential side effects of the medications often used to treat acute pain.
With chronic conditions, PEMF therapy is even more valuable. Animal studies show that PEMFs reduce the pain receptors in the brain. Some studies found that the relief was equivalent to 10 mg of morphine (Thomas). This relief, in addition to the natural healing responses that PEMF therapy creates in the body, makes PEMF therapy an ideal option for the management of chronic pain and its causes.
One of the great things about PEMF therapy is that it can be done in the comfort of your own home. The initial investment is often less than ongoing treatment would cost, and when you own a PEMF machine, multiple family members can make use of the therapy as needed.
For more information on PEMF therapy for pain reduction, or to discuss which PEMF machine might be right for you, call our office to speak to a member of my team.
There’s no need to live with chronic pain – we can help!
Jerabek, J and Pawluk, W. Magnetic therapy in Eastern Europe: a review of 30 years of research. Publ. Advanced Magnetic Research of the Delaware Valley, Chicago, 1996.
Massari L, Benazzo F, De Mattei M, et al. CRES Study Group. Effects of electrical physical stimuli on articular cartilage. J Bone Joint Surg Am. 2007 Oct;89 Suppl 3:152-61.
Thomas AW, Prato FS. Magnetic field based pain therapeutics and diagnostics. Bioelectromagnetics Society, 24th Annual Meeting, Quebec City, PQ, Canada, June, 2002
Pain management is one of the most common applications for PEMFs. Current conventional medical approaches to pain management often leave much to be desired. They involve heavy medications, procedures, surgeries, and physical therapy. Rarely will conventional doctors refer patients to alternative modalities. These include acupuncture, massage, or chiropractic therapy, let alone PEMFs. But PEMF therapy for pain should be considered.
Specialists tend to have tunnel vision. You go to a specialist for a problem and that specialist has a single approach to dealing with your problem. I like to refer to these as “parlors”. There are parlors of neurosurgery, orthopedics, pain management, natural medicine, massage, etc. Every doctor has a parlor, a specialty. If you end up in the wrong parlor, your problem may be addressed in the wrong way. It’s not to say that the specialists are not well. However, that they cannot see beyond their own parlor. Only a well-informed consumer can see past the parlors and find out what other options may exist.
Most people find PEMFs at the end of a long search for an answer to their pain. Almost everyone we speak with has tried traditional medical management of their pain before they consider alternative options. It’s only once these traditional options have failed that people do their own research on alternative treatments.
Most doctors don’t tell their patient that the problem will linger and require lifetime management. So this becomes a huge disservice to the patient. They are given false hope that this approach to treatment is going to truly resolve their problem. Yes, people will temporarily feel better and get on with their lives. But then there’s 3 months, 6 months, or a year after the treatment. The problem returns, sometimes with more severity, because the underlying cause was not dealt with.
People who have failed to find relief from other modalities will often find relief using PEMFs. Animal studies show that PEMFs reduce the pain receptors in the brain. In some research, PEMFs were found to be equivalent to 10mg of morphine. All of this aside from the natural healing responses PEMFs trigger in the body.
Our ability to relieve pain is variable and unpredictable. It depends on the source of the pain and whether the pain is acute or chronic. Pain mechanisms are complex and have local tissue and central nervous system aspects. Because of all these variables, pain management should be tailored to each person individually. The most effective pain management strategies require multiple concurrent approaches, especially for chronic pain. Rarely will a single approach solve the problem.
Having practiced medicine for more than 40 years, I’ve become very familiar with the different patterns of pain. Chronic pain (especially from arthritis, lumbar stenosis, injury, failed surgeries, etc.) is not expected to be fully cured because the underlying chronic problem doesn’t go away. Because of my years of experience, I resolve to find better, more helpful healing solutions that will work to resolve the underlying causes while at the same time providing safe, effective pain relief.
I frequently recommend magnetic therapies for people in chronic pain (usually before anything else) so that they can avoid complications and side effects, and because PEMFs usually provide a reliable degree of pain relief, through convenient treatments done at home. PEMFs have been proven in numerous studies to affect various aspects of the pain process. In my experience, almost everyone benefits from PEMF therapy and very frequently they can avoid procedures and decrease or avoid the use of medications. I usually recommend relatively high intensity systems to combat pain, as research indicates intensity is the most important component to consider when working with PEMFs for pain management.
Chronic pain is often perpetuated by abnormal, small nerve networks stuck in a rut of constant inflammation. PEMF stimulation (especially with high intensities) quiets down nerves and facilitates recovery from injury and inflammation. Even patients suffering from stubborn or systemic sources of pain have found pain relief using magnetic therapies.
Musculoskeletal disorders make up the vast majority of pain sources commonly treated with PEMFs. These include arthritis, tendinitis, sprains and strains, fractures, post-op pain, osteoporosis, wounds, neuralgias, neuropathies, hip disorders, muscle spasms, spinal cord injury, trauma, burns, neuromas, heel spurs, phantom pain, carpal tunnel syndrome, headaches, tennis elbow, reflex sympathetic dystrophy (RSD – now known as complex regional pain syndrome) and so on.
The tissue inflammation that accompanies the majority of traumatic and chronic injuries is essential to the healing process. But sometimes the body over-responds, and the resulting tissue swelling (edema) causes pain and delays healing. For soft tissue and musculoskeletal injuries and for postsurgical, post-traumatic chronic wounds, edema reduction must take place in order to accelerate healing and reduce associated pain.
PEMFs work to reduce pain by changing the local tissue environment from which the pain starts. Double-blind clinical studies have shown this with chronic wound repair, acute ankle sprains, and whiplash injuries. Similar studies have been done for neck pain.
A number of studies have also been done on the use of PEMFs for back pain. Just over 15% of the entire US population complains of chronic lower back pain. In the back pain studies, findings suggest that it is best to apply PEMFs on a consistent basis over an extended period of time to achieve the best results – and 95% of individuals found relief. Benefit was found for patients suffering from herniated discs, spondylosis, radiculopathy (spinal nerve compression), sciatica, spinal stenosis, and arthritis. People who have tried other modalities and failed to find relief will often find relief from PEMFs. Higher intensity PEMFs are often necessary in the more severe or chronic back pain situations.
In diabetic neuropathy, PEMFs used every day for at least 12 minutes improve pain, paresthesias and vibration sensation, and increased muscular strength in 85% of patients compared to controls.
Post-herpetic neuralgia, which is often medically resistant to treatment and can be extraordinarily debilitating, has been found in research to benefit from PEMF therapy. Some patients respond in as little as 30 days, while others took upwards of 90 days or more to find relief. Often, this situation requires a fairly high intensity PEMF to provide the benefit. Used properly, PEMF therapy was effective in 80% of these individuals. In no cases was the pain made worse. Both local and whole body treatments could be used, although the individuals with local therapy appeared to benefit better, probably because local treatments tend to be of higher intensities.
Patients who suffered from headaches, and failed to respond to acupuncture and other therapies, who applied PEMFs for at least 20 minutes per day had at least a 50% reduction in the frequency or intensity of the headaches and a reduction in dependency on medication. In a somewhat surprising study, it appears that even PEMF therapy away from the head may be able to help migraines. PEMF therapy to the inner thigh, femoral artery area, can decrease headache activity. Short courses of therapy produced only about a 73% result in pain reduction versus a longer course of therapy, providing relief of about 90%.
It’s easy to apply PEMFs to various parts of the body. Sometimes, the source of the pain can be treated directly (as with wounds, tissue damage, or fractures). Nerve signals conducting pain move from the source of the pain upstream to the brain (from a foot up through the nervous system all the way to the brain, for instance). Treatment can be applied anywhere along this path. Pain may be conducted downstream as well (a hip problem can cause knee pain, for instance.) For this reason, it’s ideal to treat the source of the pain, not necessarily where the pain is felt.
Sometimes the most effective pain management is to not only treat the source of the pain, but also apply treatments at the brain or along the spine. This combination allows for management of both the cause of the pain and at the same time controlling the pain signal traffic to the brain where the pain is ultimately recognized. It’s for this reason that we frequently suggest PEMFs systems that will allow for whole-body and local treatments simultaneously.
Chronic and higher levels of pain do alter EEG signals. An improvement in pain will reverse these EEG changes. Even if the goal of the treatment is simply to reduce the pain level without an expectation for reducing or eliminating the cause, research shows that applying PEMFs to the brain can cause a significant decrease in pain related changes in an EEG.
Some patients get complete pain relief after only a few treatments. Sometimes it can take up to 3 hours after treatment to achieve maximum pain relief. In rare cases, short courses of treatment can produce complete or partial pain relief for upwards of 4 months after treatment. Most people experience pain relief lasting for between 8 and 72 hours. This suggests that PEMFs stimulate increased energy in the tissues, which allows the body to fulfill its healing process. Treatments should be continued until the pain is under control, and ideally should continue beyond pain relief to ensure the injury has fully healed.
Unfortunately, the longer a person waits to start treatment with PEMFs, the more challenging it is to remove the cause, which is the primary objective of using PEMF therapies. When we use PEMF therapies we are attempting to heal the tissues that are the source of the pain signal. How long it takes to achieve this depends on the tissue and the level of damage. This is the most important aspect of use of PEMFs, that is, healing the tissue, not just “numbing and dumbing” the perception of pain.
It is also important to understand expectations in pain management. Even in the best hands, pain reduction follows a spectrum from complete elimination very rapidly to gradual reduction over extended periods of time, as the body heals itself. In many patients even a 25-30% reduction in pain is gratifying. It is not infrequent that we can actually achieve even higher levels of pain reduction.
HEAD OVER TO OUR PRODUCTS PAGE TO SEE A WIDE VARIETY OF PEMF SYSTEMS, AND SCHEDULE A CONSULTATION IF YOU NEED HELP PICKING THE RIGHT UNIT FOR YOU.
Pain is not only a nuisance—it is also a lifesaver. People born without the ability to feel pain die younger. Pain is a teacher that helps you to avoid future harm. This is especially true for sudden severe pain.
Chronic, or constant, pain can shorten your life as well, but for other reasons. One of the most important reasons is the risk of addiction to opioid painkillers.
In modern society, pain is chronic to a great extent. Pain is the primary reason people visit doctors. Chronic pain affects at least 116 million American adults. That’s more than the total affected by heart disease, cancer, and diabetes combined. Despite considerable research, there is no consistently reliable and effective treatment for chronic pain. And the rate of chronic pain continues to rise, as shown by the opioid crisis.
Chronic pain increases anxiety and dramatically reduces quality of life. Chronic pain causes disability, loss of work, and other problems in the way people act, think, and feel (emotions). If untreated, chronic pain can lead to depression, sleeping disorders, immune suppression, eating disorders, and other long-term negative health problems.
People with chronic pain continue to suffer even when the intensity of the pain is reduced by the usual treatments. They are sometimes more distressed about the emotional issues stemming from their pain than about the physical pain itself. The emotional suffering continues even when the signs of injury, considered the source of the pain, have long disappeared.
The brain responds strongly to pain, and the resulting mental states dramatically influence the perception of pain. A mother’s kiss is more effective in stopping the pain of an injury than the use of a pain reliever. Athletes injured in the heat of competition often feel the pain only once the competition is over. Soldiers often keep on fighting in the heat of battle without noticing how injured they are. Phantom pain is when a person feels pain in a missing limb or organ. This is another example that doesn’t make sense since the source of the pain is no longer present.
These examples show that pain cannot simply be explained by the flow of nerve signals. Typically, this is from the site of an injury or to an exaggerated or irregular response in the spinal cord. This transmits the pain from other parts of the body to the brain. The majority of research on pain and pain management focuses on these non-brain factors.
But now, thanks to brain research, we can peer into the brain with various types of imaging tools. This includes enhanced MRI and positron emission tomography (PET) scanning. Pain perception has been found to be the result of numerous interactions. These are between various parts of the brain exchanging and processing incoming pain signals. Even with relatively minor acute pain, about 10% of the brain cortex (the largest part of the brain) is activated, amounting to about 8 billion to 10 billion neurons. The number of actual pain-specific neurons identified in primate brains over the last 50 years is fewer than 100! To give you a sense of proportion, memory is associated with activation of about 8% of the brain, reward pathways 2%, emotion 6%, and pain 6%. So, pain signals from the body enter the brain and act like dominoes spreading throughout the brain and activating various brain functions.
The parts of the brain affected by acute pain include mostly the limbic system, the seat of emotions. These acutely produced reactions gradually go away (extinguish) in time. However, when the pain is more intense and persistent, it does not extinguish from the limbic system. Rather, it shifts and expands from the feeling of pain to more of an emotional suffering state.
Over time, this shift causes actual physical and functional brain changes. These changes can cause even minor pain signals from the body to be perceived as worse than they actually are. This is done by increasing the sensitivity of the spinal cord and the brain itself to any continuing pain input. In addition, even other non-pain sensations from the body can stimulate the brain circuits of previous pain memories. This means that the focus of clinicians on what the type of pain is—whether from inflammation or neuropathy, for example—for designing treatment is not likely useful.
Brain imaging studies done on chronic pain patients show no increase in pain-specific patterns. There does not appear to be a brain neuron cluster specifically dedicated to pain perception. Instead, the studies show enhanced activity in the parts of the brain related to emotion, the cortical-limbic system. This research shows that chronic pain cannot be thought of as a single thing but a combination of unique brain states. These brain states reflect the specific properties of each type of clinical pain.
Any given pain—for example, the burning pain of neuropathy or the sharp pain of a nerve being compressed—can involve different parts of the brain, especially the limbic system, and lead to an emotional preoccupation, depression, and memory and personality changes. These patterns are the “chronic pain brain” leading to chronic pain syndrome. These patterns are modified even more by the effects of addiction from the drugs themselves and the way the brain responds to the drugs.
So, while the most common definition of chronic pain is “pain that persists past the healing process,” this new research can re-define “pain as pain that does not extinguish its memory and emotional tracks.” This means that targeting the cortical-limbic brain circuit in treatment is critical to the control of chronic pain, and because the cortical-limbic brain circuit shares much of the same involvement seen in drug addiction, it could help with that too.
Research shows that chronic pain negatively affects the workings of parts of the brain, which suggests that pain is a progressive disease. It is critical to halt this progression as soon as possible. The rational approach for the prevention and treatment of chronic pain should target the mechanisms causing pain to be chronic.
There is evidence that certain drugs are highly effective in treating acute pain—such as acetaminophen, ibuprofen, and opiates— but they are unpredictable or have no benefit in treating most chronic pain. Why is this the case? It may not be due to the pain itself and the body’s reactions to the pain.
The current approach to treating chronic pain is almost always based on the symptoms. A new approach to chronic pain management is needed not only because of the opioid crisis but also to reduce human suffering.
This new research evidence tells us that one of the main targets of chronic pain treatment should be the centers of the brain that are affected by the chronic pain, primarily the prefrontal cortex and the limbic system, including the hippocampus.
Pulsed Electromagnetic Field (PEMF) therapy can be used to target the pain response centers in the brain. There is extensive research on using PEMF therapy to treat the brain and regulate brain function. This brain research has shown that PEMFs are safe and effective to use across the brain. This includes use of devices across the range of intensity, from very high to low. High-intensity PEMFs are often used in the clinical setting, although many people own their own high-intensity systems. Medium to lower intensity PEMF systems are also available and can be used across the brain. PEMFs can help to tone down inflamed and overactive brain functions (hyperexcitability), both by direct tissue actions (repair) and by adjusting brain frequency functions (entrainment).
In other blogs on our website, Sleep and PEMFs and Concussion and TBI, among others, we talk about the use of PEMFs for brain entrainment and repair. Entrainment and brain stimulation are also discussed in the book Power Tools for Health.
PEMFs, including high-intensity systems, have been found to be extraordinarily safe to treat the brain. My favorite PEMF systems for treatment of the brain—whether for multiple sclerosis (MS), Parkinson’s disease, seizures, Alzheimer’s, and sleep disorders, among others—are lower intensity, portable and operated by battery, with the option to select multiple brain-wave-tunable frequencies and allow extended use. In addition, portable PEMF systems that allow selection of a range of frequencies can be used for more extended treatment times at home. Extended treatment times may be especially important at the beginning of a course of treatment as the PEMFs begin to “re-educate” the brain through entrainment to reduce the high levels of activation of the pain circuitry.
If the causes of the chronic pain signals away from the brain have not healed—for example, injuries, neuropathy, low back pain, arthritis—PEMFs can also be used to treat these. They can also be used to help interrupt pain signals coming through the spinal cord from the outside or surface of the body or from the spinal cord itself by applying the devices at the base of the spine (for problems below that level, such as the hips or legs) or at the neck (for problems below that level) in addition to treating the brain. Even if the source of the pain is healed, improving the chronic effects to the brain of the pain reactions often lag significantly behind, requiring the brain to be treated anyway. This is especially true if there is opioid addiction.
Based on the current research, coils from the PEMF device are placed across the skull at the upper part of the forehead at the hairline and, at the same time, at the base of the skull on the upper part of the neck for at least 1 hour. Following this, coils should be placed about an inch above and slightly behind the midline of the ears, on both sides of the head, for at least 1 hour. These placements target the goal brain locations, the frontal brain cortex and the limbic system.
A portable battery-operated system can be used for at least 2 hours at a time, with 1 hour for each combination of locations. Since sleep disturbance is a very common problem in chronic pain. This portable battery-operated PEMF system can be used under the pillow all night long to help with sleep.
My recommended frequencies are 10 Hz or 7.8 Hz during the day and 3 Hz through the night.
Source: Chronic pain: The role of learning and brain plasticity. Restor Neurol Neurosci. 2014; 32(1): 129–139. AR Mansour, MA Farmer, MN Baliki, and A Vania Apkarian. Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
This October, Dr. Pawluk appears on the cover of Townsend Letter. Townsend Letter, the Examiner of Alternative Medicine, publishes a print magazine about alternative medicine. It is written by researchers, health practitioners and patients. In the October issue of this magazine, he shares extensive research and references on PEMF (Pulsed Electromagnetic Field) Devices in the Care and Management of Neurological Disorders.
PEMF (pulsed electromagnetic field) devices chiefly reflect an emerging approach to cost-effective therapy for difficult-to-manage neurological and pain disorders. The primary focus of this review is the use of devices of low electromagnetic intensity and frequency, designed for self-care by consumers, with assessment, guidance, and follow-up by their clinicians.
Indications. PEMF for neurological disorders has been shown to support progress in neuro-chemical conditions that include addiction, ADHD, anxiety, autism spectrum disorders, depression, PTSD, and sleep issues. Research also indicates benefit for neuro-pathologies such as concussion, memory loss, mild cognitive impairment (MCI), mild traumatic brain injury (TBI), multiple sclerosis, Parkinson’s disease, stroke, and tremor. (A variation of PEMF, high-powered rTMS (repetitive transcranial magnetic stimulation) devices used in hospitals are FDA-approved to treat conditions ranging from bone healing to resistant major depressive disorders (MDD).
Mechanisms of action. As a magnetic field passes through the body, that field can stimulate a range of potential processes and activities, depending on the frequency and power:
Pulsed electromagnetic devices encompass a broad range of appliances with corresponding capabilities.
High-intensity, high-frequency devices utilized in health systems. In terms of high-end devices, a robust literature is available, documenting approximately 2,400 clinical trials using rTMS to date. rTMS devices operate at an intensity of 8,000 gauss. By way of context, an MRI machine produces a high-intensity magnetic field ranging from 20,000 to 60,000 gauss (2 to 6 Tesla) depending on the machine and application. rTMS devices have been approved since 2008 and are reimbursable for the treatment of medication-resistant depression.
These units cost approximately $50,000, so they are typically found in hospital medical centers and large mental health group practice. rTMS enhances neuroplasticity, entrains and resets brain cell oscillators between the thalamus and the cortex, normalizes regulation, facilitates reemergence of natural cerebral rhythms, and through these mechanisms restores normal brain function. TMS can be administered broadly at a lower magnetic field strength to treat multiple brain areas simultaneously.
Low-intensity, low-frequency devices for self care. Additionally, At the other end of the spectrum are devices designed for home use and self-care, currently in the range of $500 to $13,500. The frequency of these devices is typically 1 to 100 Hz, (454) with intensity ranging from 70-7,000 gauss, and typically used to support sleep, pain management, or numerous other aspects of healing. Electronic appliances for consumer use are typically in the range of extremely low frequency (ELF) at or below 1,000 Hz.
Consequentially, the therapeutic process focuses on given brain wave states (gamma, beta, alpha, theta, and delta). These are scientifically well known and frequency-specific. Ninety years of brain imaging have made it clear that the brain is an organ which responds to frequency. Alpha and beta brainwaves are produced by the brain itself. They were first reported in the medical literature in 1929 by the German neurologist, Hans Berger, the inventor of the EEG. Since that time, frequency states of the brain have been measured and associated with a range of mental states and activities–alpha through gamma.
In meditation, a great deal of research exists for use of magnetic field frequencies. This is used to achieve the same brainwave entrainment using the theta frequency (4 to 7.5 Hz), or the more recently discovered 40 Hz gamma. In contrast, a PEMF signal within the beta range (from 13 to 25 Hz) provides an overall effect of increased alertness by typically causing a greater portion of the brain to synchronize with that frequency.
Basically, brainwave entrainment is the practice of causing brain waves to fall into step with an external stimulus. Neurofeedback, for example, seeks to entrain the brain by promoting these frequencies. However, as a clinician, I personally stopped providing neurofeedback. Consequentially, because I found that magnetic field therapy could do the job faster than neurofeedback, which tends to be slow and costly to patients.
More powerful PEMF systems are designed for use in the clinical environment by providers for therapeutic interventions. These include pain management and rely primarily on higher density pulses rather than frequency. A PEMF will pass completely through the body whether it is of high or low intensity. The difference is the amount of charge the field will stimulate in the tissues as it moves through the body. This is based on Faraday’s law. The magnetic fields produced by the body itself are well under 1 thousandth of a gauss (nano- or pico-Tesla), or less than one tenth of a microTesla. Human biology is affected by and responds to a vast range of magnetic field intensities.
Differentiating PEMF from EMFs. There are EMFs produced by cell phones, microwave appliances, cell towers, and Wi-Fi. They all involve extremely high frequencies, with very short wavelengths. They are are absorbed by the body, with the potential for damage. In contrast, ELF (extremely low frequency) PEMF devices are extremely low frequency with extremely long wavelengths; therefore, they penetrate through the body completely and do not stop in the body. The body is transparent to extremely low-frequency magnetic fields.
| Electromagnetic Frequencies | |
| Static electric or magnetic fields | 0 Hz |
| Extremely low frequency (ELF) electric or magnetic fields | 1 – <300 Hz |
| Delta, theta, alpha, beta, gamma frequencies | 0.1–100 Hz (200 gauss or greater) |
| rTMS treatment | 1-20 Hz (8,000 gauss) |
| Intermediate frequency electromagnetic fields | 300 Hz – 100 kHz |
| High Frequencies | 100 kHz – 10/30 THz |
| Radiofrequency electromagnetic fields (radiowaves),
Microwave ovens – 100 MHz | 100 kHz –
<300 MHz |
| Microwave radiation | 300 MHz –<30 GHz |
| Wi-fi communications— | 900 MHz – 60 GHz |
| 5G Millimeter waves (MMW) | 30 GHz – <300 GHz |
| Terahertz waves | 300 GHz – 10/30 THz |
Table 1. The range of electromagnetic frequencies in medicine, manufacturing, and communications.
Patients with a pacemaker or other type of implanted electrical device. The only absolute contraindication for use of a PEMF device is the caution not to place an active applicator over an implanted electrical device such as a pacemaker, cochlear implant, intrathecal pump, etc., because the magnetic field can shut off the device or otherwise interfere with its function. There are increasingly available MR-conditional implanted electronic devices that are safe with PEMFs.
Organ transplant patients. PEMF therapy is also contraindicated for these patients, since they take immune suppression medications to prevent organ rejection. There is a chance that PEMFs may actually stimulate or activate a more aggressive rejection process by stimulating the immune system. PEMF interactions with immunosuppressive medications can be unpredictable.
Implanted metals. Extremely high intensity PEMFs should be used with caution or with professional guidance for people with implanted metals, such as joint replacements, dental implants, mechanical heart valves, metal stents, or metal staples, because extremely high intensity PEMFs may stimulate the nerves in the area of the metal, causing sharp pain.
Pregnancy. Although there is no evidence of harm, the safety of PEMFs has not been proven in pregnancy.
Bleeding or Grave’s disease. PEMFs should be used with caution in Grave’s disease or in the case of active bleeding.
Seizures. There is now a fairly large body of research regarding the use of PEMFs of different intensities and the potential association with seizures. Evidence indicates that PEMFs are very unlikely to cause seizures, based on research studies using high-intensity PEMF systems, which have the highest concern for generating seizure activity. In fact, studies have suggested that PEMFs are capable of providing benefit to epileptic patients (Menkes, 2000). In a study of 58 patients with partial or generalized epilepsy, TMS did not provoke seizures or EEG changes in any patient. Long-term follow-up found that their epileptic conditions were not made worse by TMS. Subsequently, a review of 20 studies involving 859 subjects found that 45% of patients responded favorably to treatment and 28% experienced seizure cessation.
Adverse effects. Most adverse reactions are mild and temporary and can be managed by simply continuing the therapy. Sudden increases in circulation, especially in ischemic tissues (areas with restricted or reduced blood flow) may lead to uncomfortable increases in circulation for a short time after the magnetic field has been applied. The increase in circulation, while usually a desirable effect, can lead to a surge of oxidative stress. It is desirable to have adequate antioxidant support in the body before beginning treatment. Sudden improvements in circulation may also lead to aggravations of existing extensive or severe inflammatory processes, typically in the skin or soft tissues.
Aggravation of hives is likewise possible and should be considered before starting treatment. In individuals with electrical hypersensitivity and electromagnetic hypersensitivity, these reactions are more common and more uncomfortable. However, rarely does magnetic therapy have to be discontinued as a result. The recommendation is to use lower intensities and shorter treatment times.
If the adverse reactions are intolerable, they can be lessened by making small changes to the protocol. These changes include lowering intensity, and decreasing treatment times. These changes should only be necessary on a short-term basis since reactions tend to diminish relatively quickly with continued treatment and as healing progresses.
The problem with being prescriptive or instructive on the use of a PEMF device is that it depends on the specific PEMF system. PEMF in clinical practice means first, understanding the instrument you are utilizing, and how PEMFs work. You must also understand the pathophysiology that you’re dealing with, and the therapeutic potential of the device for that disorder. Essentially this is a process of putting two and two together. There are many PEMF systems and every system is going to have a particular aspect of how you would use it.
Begin with low intensity and brief treatment times. Observe the patient’s response. If they are progressing in the desired direction, increase the time and intensity in increments. Once the patient is stable in their response, it becomes a matter of healing the brain, to the extent that it can be healed, and then moving into maintenance mode to maintain the benefit.
Frequency. Frequency is literally a measure of the frequency of the pulsing of a particular magnetic field. Typically, a single frequency is selected and with the continued stimulation, an increasing number of cells will vibrate to that frequency. Consequently. the brain will perform in that mode, such as beta which promotes alertness. Gamma frequencies are often deficient in Alzheimer’s patients, and there is animal research indicating that promoting gamma frequencies will slow the onset of AD and tau deposits (MacFarlane MP, Glenn TC, 2015).
Intensity. Magnetic field intensity (flux density) is basically a measurement of the strength of a magnetic field. The intensity of a magnetic field is responsible for how much charge is induced in the stimulated tissues. The intensity is often defined by the power of the device. By varying degrees, that determines the strength of the magnetic field, and therefore the amount of stimulation that accompanies it.
Medical PEMF. Devices are available that are more powerful than the ELF PEMF designed for home use. Higher-intensity devices are available for use by clinicians that range from 200 gauss to 8,000 gauss. A device that I would use in clinical practice for brain treatment would be 2,000 gauss ($4,600), or a 4,000 gauss unit ($6,000 – $7,000). A device that enables treatment of two areas of the body at the same time runs approximately $13,000. As the intensity deliverable by the machine increases, the price typically increases. Often practitioners can manage to provide substantial treatment using moderate intensity devices.
Duration. For low intensity systems, intensity is not a concern. If I am treating a patient with exquisite sensitivity, I go “low and slow.” In clinical practice, the provider becomes highly familiar with their device of choice, so treatment involves getting to know the patient and their specific response to that particular device.
Bone and wound healing. The FDA approved pulsed EMFs (biphasic low frequency signal) for the treatment of fractures with delayed bone healing in 1979. (Andrew, Bassett, Pawluk, Pilla, 1974; Bassett, Pawluk, Pilla, 1974; Bassett, 1993). Beneficial effects on wound healing have been documented for three decades. A study published in 1992, for example, reported: “Wound surface area, ulcer depth, and pain intensity were assessed at weeks 0, 4 and 8. At week 8 the active group had a 47.7% decrease in wound surface area vs. a 42.3% increase for placebo (P < 0.0002)” (Stiller, Pak, Shupack, et al., 1992).
Nerve regeneration. Animal research has been conducted over the past three decades. It has found evidence that PEMF can support regeneration of nerve tissue. (Rusovan & Kanje 1991; Rusovan, Kanje, & Mild, 1992; Bervar, 2005; Das, Kumar, Jain, Avelev, & Mathur, 2012; Susynski, Marcol, & Szajkowski, et al. 2014; Stölting, Haralampieva, Handschin, Sulser, Eberli, 2016; and Ross, Syed, Smith, & Harrison, 2017). We see this in patients with neuropathic numbness who begin to experience paresthesias once the nerves begin to recover.
Sleep issues. In a double-blind study using a 4 Hz (5 gauss) unit, researchers found that this intensity and frequency were effective in reducing sleep disturbances within six weeks in 83% of the treatment group, compared with 57% in the controls. Another study, a four-week double-blind, placebo-controlled clinical trial, involved 100 people with insomnia (sleep latency, interrupted sleep, or nightmares). Some 90% of the treatment group experienced clear or substantial improvement, whereas approximately 50% of the placebo group benefitted. (Pelka, Jaenicke, Gruenwald, 2001).
Bipolar disorder and depression. PEMF therapy was found to produce rapid mood elevation in depressed patients with bipolar disorder (Rohan, Yamamoto, & Ravich, 2014), as well as other depressive disorders (Leuchter, Cook, Jin, & Phillips, 2013). Another study found that after five weeks of active treatment with low-intensity transcranial PEMF (T-PEMF), there was a 62% reduction on a Depression Rating Scale among those in the active T-PEMF group (Martiny, et al., 2010).
This study also found that improvement was noticeable within the first weeks of therapy. A home study of patients with depression using the T-PEMF reported that progress was gradual but sustained. At five weeks, only 27% had obtained relief. However, after eight weeks of daily treatment, 73% of subjects were relieved of their depression. Two years after the treatment, 52% of subjects were still in remission, and those who were not in remission, found relief after another course of treatment (Bech, Lindberg, Strasso, et al., 2015; Strasso, Lauritzen, Lunde, et al., 2014).
Mechanisms of action. Consequentially, in PEMF studies conducted on nerve tissue cells in the laboratory setting, preliminary data suggest that exposure to a PEMF of short duration may have implications for the treatment of acute stroke. PEMF exposure counteracted low oxygen supply (hypoxia) damage significantly, reducing cell death by inhibiting activation of various tissue chemical processes involved in oxygen deprivation. Furthermore, PEMFs significantly decreased low oxygen-induced oxidative stress after 24 to 48 hours. Moreover, PEMFs were able to reduce some of the most well-known inflammatory cytokines, including TNF-α, IL-1ß, IL-6, and IL-8 (Vincenzi, Ravani, Pasquini, et al., 2016).
Memory loss. Moreover, Studies have been performed over the past 25 years to investigate the effects of low-intensity PEMF stimulation on memory processing and attention (Başa, Schürmann, Başar-Eroglu, & Karakaş, 1997). Researchers at Northwestern University studied the use of PEMFs to stimulate the brain in older adults to determine whether they could improve memory by stimulating the parietal lobe. Stimulation was performed using a 100 gauss PEMF at 10 pulses per second for 20 minutes in each session, over five consecutive daily sessions. Full intensity stimulation was compared to low intensity “sham” stimulation.
Furthermore, the researchers also used functional MRI (fMRI) to check brain function and neurological activity between the parietal lobe and the hippocampus. By the completion of the study, the memory tasks of the older individuals had improved so much that they now appeared similar to the younger control group. Therefore, memory loss was reverse-aged with active PEMF stimulation (Nilakantan, Mesulam, Weintraub, et al., 2019).
Multiple sclerosis. Additionally, a study of relapsing remitting multiple sclerosis comorbid with TBI reported that no patient showed evidence of relapse during the follow-up of at least 8 months. The authors concluded that magnetic brain stimulation was easy to perform, painless, and safe. (Ingram, Thompson, & Swash, 1988).
Inflammation. Conversely, the longer inflammation persists after even a mild neurological injury, the more damage is done to nerve tissues, which may become ultimately unrecoverable. In this context, an animal study of TBI explored whether PEMF signals could alter the course of inflammation. Cytokine IL-1ß levels in cerebrospinal fluid (CSF) were proportional to injury severity in brain bruise injury. PEMF treatment applied continuously reduced IL-1ß levels by up to ten-fold in CSF within six hours after injury, and significantly suppressed IL-1ß within 17 to 24 hours after injury (Rasouli, Lekharaj, White, et al., 2011).
Ischemia, ten minutes post-blockage. On the other hand, In an animal study involving blockage of the carotid artery, PEMF treatment at 75 Hz was initiated ten minutes after onset of ischemia and continued throughout the recovery of the blood supply. The PEMF did not reduce the total area of injury evident on MRI. However, PEMF reduced brain edema by 65%. Subsequently, the PEMF-treated group evidenced double the recovery, 55% vs. 28% (Grant, Cadossi, Steinberg, 1994).
Post-stroke, three to four weeks previous. Simultaneously, forty-eight patients (average age 45-48 years old) three to four weeks post-stroke were divided into two groups and provided with the same rehabilitation program. Patients in the treatment group were additionally exposed to a standard series of 10 ELF-EMF treatments, for 15 mins at 5 mT (50 gauss), 40 Hz. The PEMF group had double the amount of BDNF (brain-derived neurotrophic factor), 50% increases in VEGF (vascular endothelial growth factor), and 2.5 times more gene expression. Clinically, the PEMF group averaged 35% better cognitive functioning and 45% better depression scores. In the non-PEMF group, stroke scale severity and function measures were typically 65% and 50% worse, respectively (Cichoń, Bijak, Czarny, et al., 2018).
Post-stroke, six months previous. A study of higher-intensity, low-frequency TMS PEMF for stroke investigated the long-term behavioral and neurophysiologic effects of combined HI-PEMF and physical therapy (PT) in chronic stroke patients with mild motor disabilities more than six months post stroke. In this study, 30 patients were enrolled in a double blind, randomized, single-center clinical trial. Patients received two PEMF sessions per day, 25 minutes each, 1 Hz high-intensity PEMF over the intact (not affected) motor cortex with standard task-oriented upper limb exercise PT. The real treatment group had greater behavioral and neurophysiologic improvements, particularly in the group receiving treatment before PT, with robust and stable improvements (Avenanti, Coccia, Ladavas, et al., 2012).
Post-stroke, two to twenty-four months previous. Likewise, In a lower intensity PEMF study, 95 patients with spastic paralysis received treatment three times per day using 40 Hz, 10 mT (100 gauss), for 12 minutes, over 21 days, and repeated every six to eight weeks. Patients also received medication and physical therapy. Improvements in actively treated patients included significant decrease of muscle tension (88%), increased muscle contraction force (76%), increased active motion of paralyzed limbs (74%), improved gait (71%), and decreased aphasia (64%) (Sieron, Cieslar, Adamek, et al., 1996).
Post-stroke, one to ten years previous. Another study of stroke rehabilitation using low-frequency PEMF treated patients who had incurred a stroke years earlier (within the past 10 years). During a 15-day rehab hospitalization, each person received 22 treatment sessions of 20-minute low-frequency PEMF and 120-minute intensive occupational therapy (OT) daily. The PEMF of 1 Hz was applied to the side of the head opposite the area of the stroke, i.e., on the same side as the paralysis. Improvements were seen up to four weeks after discharge in 39% of patients. Researchers concluded that a 15-day inpatient PEMF treatment plus OT protocol is clinically useful neuro-rehabilitation for post-stroke patients with upper limb paralysis (Kakuda, Abo, Shimizu, 2012).
TBI Study. A pilot study was recently completed with a group of ten individuals with a history of concussion/TBI. In some cases, the injuries were more than ten years old. Using a medium intensity 10 Hz PEMF device applied to the head (front to back or side to side), patients were treated for two hours a day for three months. Everyone in the study noticed benefits. An objective measure of brain function was used to gather information before and after treatment and showed clear improvements over baseline scores, as well as important clinical improvements and better cognitive focus (Pawluk, 2019) Also note that research has reported improvement in post-concussion headaches treated with PEMF for as little as 30 minutes (Grunner, 1985).
In situations involving neurological insult such as a stroke, treatment with a PEMF device for even short durations may have positive implications for recovery and for the treatment of acute stroke. While it is difficult for the medical system to be able to treat people in the acute phase of brain injury, whether it is stroke or trauma, if an individual owns a PEMF system, that can be used immediately and continually to reduce the extent of the damage. This is critical in improving the prognosis and in reducing the length of time for more complete recovery.
William Pawluk, MD, MSc
Dr. William Pawluk is a holistic physician located in Townsend, MD in the Baltimore metropolitan area, with past appointments at Johns Hopkins University and the University of Maryland. With a background in family medicine, he has additional training in functional medicine, nutrition, acupuncture, homeopathy, hypnotherapy, bodywork, and energy medicine. He is the foremost authority on Pulsed Electromagnetic Field therapy in North America, with 30 years of experience in clinical applications of PEMF for healing, regeneration, and holistic pain management.
Author of Power Tools for Health, a comprehensive book on the research and usage of PEMFs in healing, he has also written professional book chapters and numerous journal articles. and provided more than 50 interviews for radio, podcasts, magazines, and TV. He has been cohost of a two-hour holistic health radio show for the past ten years and host of the Pain Solution Summit, www.painsolutionsummit.com. In 2019, Dr. Pawluk received the ACIM Lifetime Achievement Award for work with Magnetic Field Therapy.
William Pawluk, MD, PC
1001 Cromwell Bridge Rd., #312, Towson, MD 21286
866-455-7688
www.drpawluk.com
PEMF Devices. Dr. Pawluk has purchased, tested, and validated approximately 100 different PEMF devices over the 30 years he has worked in this field. Based on his experience, a number of devices are recommended and available for purchase on his website, drpawluk.com. They include: local and whole-body systems, both battery and AC-powered devices, intensities of devices range from very low intensity (<1 Gauss), medium intensity (10 – 1000) Gauss, to high intensity (2000-8000 Gauss) including devices that are able to cause muscle contractions.
Consulting services. Dr. Pawluk provides consulting services to both consumers and practitioners. Consultations are recommended for practitioners to be able to have more certainty about the most appropriate tools for the professional setting. Many professionals spend much more than they need to for PEMF systems. On the other hand, many professionals also acquire PEMF systems that are not likely to provide much benefit quickly in the practice setting.
Website. drpawluk.com is an extensive resource for patients, with basic educational information, more than 40 blogs with references, numerous videos, and a virtual store from which devices may be purchased. Once devices are purchased Dr. Pawluk and his staff provide significant ongoing support for both initial use and subsequent informational needs.
Book. Power Tools for Health is a readable, highly referenced work on basic concepts in the application of PEMFs. These include mechanisms of action, an extensive clinical section on 50 different health conditions, and more than 500 references on laboratory findings and clinical trials.
Andrew C, Bassett L, Pawluk RJ, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science (80-). 1974;184(4136):575–577. doi:10.1126/science.184.4136.575
Avenanti A, Coccia M, Ladavas E, Provinciali L, Ceravolo MG. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: A randomized trial. Neurology. 2012 Jan 24;78(4):256-64.
Başar E, Schürmann M, Başar-Eroglu C, Karakaş S. Alpha oscillations in brain functioning: an integrative theory. Int J Psychophysiol. 1997 Jun;26(1-3):5-29.
Bassett CAL. Beneficial effects of electromagnetic fields. J Cell Biochem. 1993;51(4):387–393. doi:10.1002/jcb.2400510402
Bassett CAL, Pawluk RJ, Pilla AA. Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann NY Acad Sci. 1974;238(1):242–262. doi:10.1111/j.1749-6632.1974.tb26794.x
Cichoń N, Bijak M, Czarny P, et al. Increase in blood levels of growth factors involved in the neuroplasticity process by using an extremely low frequency electromagnetic field in post-stroke patients. Front Aging Neurosci. 2018 Sep 26;10:294.
Cichoń N, Czarny P, Bijak M, et al. Benign effect of extremely low-frequency electromagnetic field on brain plasticity assessed by nitric oxide metabolism during poststroke rehabilitation. Hindawi. 2017;ID 2181942:9. | https://doi.org/10.1155/2017/2181942
Grunner O. Cerebral use of a pulsating magnetic field in neuropsychiatry patients with long-term headache. EEG EMG Z Elektroenzephalogr Verwandte Geb (1985) Dec;16(4):227-230.
Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230.
Ingram DA, Thompson AJ, Swash M. Central motor conduction in multiple sclerosis: evaluation of abnormalities revealed by transcutaneous magnetic stimulation of the brain. J Neurol Neurosurg Psychiatry 51(4):487-494, 1988.
Kakuda W, Abo M, Shimizu M, et al. A multi-center study on low-frequency PEMF combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients. J Neuroeng Rehabil. 2012 Jan 20;9(1):4.
Leuchter AF, Cook IA, Jin Y, Phillips B. The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder. Front Hum Neurosci. 2013 Feb 26;7:37.
Nilakantan AS, Mesulam MM, Weintraub S, Karp EL, VanHaerents S, Voss JL. Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology. 2019 May 14;92(20):e2349-e2354.
Pawluk, W. The role of pulsed magnetic fields in the management of concussion and traumatic brain injury. J Science and Medicine, 2019(1):1-12.
Rohan ML, Yamamoto RT, Ravichandran CT, et al. Rapid mood-elevating effects of low field magnetic stimulation in depression. Biol Psychiatry. 2014 Aug 1;76(3):186-93.
Glaucoma is actually a group of eye diseases that are often caused by increased pressure inside the eye. Unless the pressure is controlled, it can cause damage to the optic nerve and a loss of vision (macular degeneration). In the early stages, it’s difficult to determine whether you have glaucoma; it’s virtually symptom-free. As the condition progresses, side vision may begin to fade. If left untreated, the field of vision will continue to narrow and blindness results.
Glaucoma is the leading cause of blindness in the United States. Nearly three million people have some form of it. Fortunately, if detected early, glaucoma can usually be controlled.
During the past century, elevated intraocular pressure [IOP] has been the main marker for glaucoma diagnosis. Eyes may have an IOP within the normal range and still develop glaucoma. On the other hand, an elevated IOP may be present. This comes without detectable damage to the optic nerve, called ocular hypertension. Thus, the new thinking is that progressive retinal damage may not be directly correlated to the extent of the IOP level.
The best way to protect yourself is to be aware of your risk, and to make sure you have a comprehensive screening regularly. People with higher risk include those with a family history of glaucoma. Furthermore, black Americans over the age of 40, anyone with elevated eye pressure, and anyone over the age of 60. People at a higher risk for glaucoma should have their eyes examined through dilated pupils every two years.
Sophisticated diagnostic tests are used to diagnose and manage glaucoma. All patients will have visual field examinations using both computerized and manual tests. These include ophthalmic photography (photos of the optic nerve) and nerve fiber layer photography with a digital system. Delayed intervention is likely to result in more permanent and greater visual loss. So, early intervention would be the best strategy for anyone with increased intraocular pressure or early glaucoma.
There are many types of glaucoma: mainly Primary Open-angle (which makes up about 80% of all cases). Then, there is normal tension, narrow-angle, acute angle-closure, chronic angle-closure, childhood, congenital (Infantile). Furthermore, one can have juvenile, after cataract extraction, pigment dispersion and pseudoexfoliation from uveitis, and glaucoma following trauma (traumatic).
For reasons that doctors don’t fully understand, increased pressure within the eye (intraocular pressure) is usually, but not always, associated with the optic nerve damage that characterizes glaucoma. This pressure is due to a buildup of a fluid (aqueous humor) that flows in and out of your eye.
This fluid normally exits your eye through a drainage system at the angle where the iris and the cornea meet. When the drainage system doesn’t work properly, the fluid can’t filter out of the eye at its normal rate, and pressure builds within your eye.
In primary open-angle glaucoma, the drainage angle formed by the cornea and the iris remains open. However, the drainage channels (trabecular meshwork) in the angle are partially blocked, causing the fluid to drain out of the eye too slowly. This causes fluid to back up in your eye, and pressure gradually increases within your eye. Damage to the optic nerve doesn’t cause symptoms or pain. It happens so slowly that you may lose an extensive amount of vision before you’re even aware of a problem. The exact cause of primary open-angle glaucoma remains unknown.
Angle-closure glaucoma occurs when the iris bulges forward to narrow or block the drainage angle. This is typically formed by the cornea and the iris. As a result, fluid can’t adequately flow through and exit your eye. Your eye pressure may increase abruptly. Angle-closure glaucoma usually occurs suddenly (acute angle-closure glaucoma), but it can also occur gradually (chronic angle-closure glaucoma). Some people with an abnormally narrow drainage angle may be at risk of developing angle-closure glaucoma.
While glaucoma can’t be cured, it can usually be treated. Glaucoma can produce a chronic, progressive deterioration of the optic nerve. The treatment of glaucoma is to lower IOP in order to prevent or to slow down the damage to the optic nerve. Glaucoma treatment usually begins with medications or laser techniques. However, when these have failed or are not tolerated, your ophthalmologist may suggest surgical procedures. Medications — in the form of eyedrops or pills — are the most common early treatment for glaucoma. Some cause the eye to create less fluid. Others lower pressure by helping fluid drain from the eye.
In addition, laser surgery helps fluid drain out of the eye. There are three types of laser treatment. Doctors will often use an argon laser for open angle glaucoma. Furthermore, they’ll use a YAG laser for angle closure glaucoma, and a diode laser for end-stage glaucoma.
Common surgical procedures include trabeculectomy or valve implants to relieve pressure on the eye. The delicate, microscopic incisional methods include trabeculectomy with or without microshunt implantation, tube shunt (glaucoma drainage device) implantation, cyclophotocoagulation and newer procedures called MIGS, or minimally invasive glaucoma surgery. Each has its own special uses, advantages and disadvantages.
There are risks with any type of surgery. It is important to note that glaucoma surgery is very successful at substantially slowing the progression of glaucoma. Moreover, it achieves the intended eye pressure. Glaucoma surgery can prevent further vision loss and on rare occasions improves vision. However, damage that has already occurred as a result of glaucoma is considered permanent and not yet reversible.
Sometimes, the surgery can lead to eye pressures that are too low, called hypotony. This is more common soon after the surgery. With low pressures, fluid may collect behind the retina causing choroidal detachment. This results in a shadow in your peripheral or side vision. Usually this is temporary as the pressure returns to the levels that were intended. Sometimes, however, hypotony persists and surgery must be performed in order to fix this problem. More common than low pressure complications, glaucoma surgeries may fail over time due to the natural healing or scarring tendencies of the eye, resulting in eye higher than desired pressures. Sometimes, scarring is so intense that the operation may fail to achieve a lowered pressure and you may need to restart your glaucoma medications or undergo repeat surgery.
Because glaucoma treatments are not 100% risk-free, nor are they always successful, and require lifetime treatment with potential side effects, are there alternatives to managing glaucoma? As with any condition being managed with magnetic fields or PEMFs, typically, the sooner treatment is begun in the course of the condition, the better the results and the faster good results are obtained.
As with most of the updates I write, I prefer to support my recommendations with research evidence, and my experience and the experiences of others. The latest science and knowledge regarding the causes of glaucoma are pointing to the significant presence of inflammation blocking the flow of fluid out of the eye channels, way before the discovery of either the presence of IOP or changes in vision, and the induction of an undesirable form of nitric oxide. The 2nd aspect of a focus for intervention is the protection of the retina from progression of the condition and perhaps recovery of the retina of the eye, when damage is already present.
In one study, courses of rotating PEMF therapy (MT) were given using a device of a 33 mT [330 Gauss] magnetic field, rotation frequency of 1.0 to 1.5 Hz, to 31 patients (43 eyes) for 10 min with primary open-angle glaucoma, over 10 sessions. Untreated eyes (n = 15) of the same patients were controls. The patients were examined before and 4 to 5 months after MT. Vision acuity improved by 0.16 diopters, on average, in 96.7% of the treated people who had vision acuity below 1.0 diopter before treatment. By way of comparison, mild myopia [shortsightedness] could have a loss 1.00 to 3.00 diopters, while over the counter reading glasses will be rated at +1.00 to +3.00 diopters.
MT brought about an improvement of spatial contrast sensitivity by at least 7 of a possible 12 levels in 85% of 26 eyes assessed. After PEMFs, visual field deficits decreased by at least 10% in 72% of 43 eyes versus controls and decreased by 22% vs. the initial value overall in those treated. After 4 to 5 months the treatment changes in the vision acuity and visual field deficit were negligible, in other words the results were stable even after 4 – 5 months. In controls the parameters showed no improvement over the entire follow-up period.
Bisvas Shutanto Kumar, Listopadova NA. Possibilities of magnetotherapy in stabilization of visual function in patients with glaucoma. Vestn Oftalmol. 1996 Jan-Mar;112(1):6-8.
In a different study, a different device, that is, a “traveling” magnetic field device, similar to the Almag, was used to treat primary open-angle glaucoma (POAG). In a traveling magnetic field device each coil is turned on sequentially in a series repeatedly. That creates a wave or stream -like action in the tissues, thought to be more activating. The PEMF was applied in patients to the cervical spine in the area of the sympathetic ganglia. Vascular flow and pressure parameters were analysed along with visual evoked potentials, visual fields, and visual acuity. They found that magnetic field therapy produces better clinical results in patients with stage I and II POAG compared with medication (using trental tablets).
Magnetotherapy designed to affect cervical sympathetic ganglia for the treatment of patients with primary open-angle glaucoma. Veselova EV, Kamenskikh TG, Raĭgorodkiĭ IuM, Kolbenev IO, Myshkina ES. Vopr Kurortol Fizioter Lech Fiz Kult. 2010 Sep-Oct;(5):21-4.
Another group studied the influence of PEMF on the flow of fluid of the eye in POAG. They used a rectangular pulse form at a frequency of 50 Hz, 8.0-8.5 mT (80-85 gauss) intensity. The duration of the procedure was 7 minutes for a total of 10 sessions. 150 patients (283 eyes) were evaluated. Latent, initial and advanced glaucoma all benefited from the use of PEMFs. There was an increase in the amount and flow of fluid through the outflow canals of the front part of the eye [anterior chamber]. In the latent stage of glaucoma, outflow became normal in 25% of cases. At the initial and advanced stages 17.8% and 16.0% of cases, respectively, became normal. The authors concluded that they could recommend this method of treatment of open-angle glaucoma.
Tsisel’skiĭ IuV. Oftalmol Zh. 1990;(2):89-92. The effect of a pulsed electromagnetic field on ocular hydrodynamics in open-angle glaucoma.
Research evaluated the possible mechanisms for improvement seen in retinal function. The effectiveness of PEMF therapy is not the same in all patients. The benefits from PEMF treatment for 15-30 min usually last only for 8-10 days, consistent with the time to renew rod pigments in the retina. In addition, visual examination of the back of the eye after electromagnetic treatment reveals dilation of the capillaries. Hence, one conclusion is that the favorable effect of PEMF therapy was from improvement of microcirculation.
They found that retinal circulation gradually increased from arterioles to capillaries and venules. It appears that the authors concluded that the conditions for retinal rod pigment restoration in the central area of the retina are less favorable than in its peripheral areas. Therefore, the therapeutic effect in patients with loss of vision in the central area of the retina will occur after a greater number of PEMF stimulation sessions.
A possible mechanism of retina dystrophy treatment by electromagnetic field. Shlygin, V. V.; Arnautov, L. N.; Maksimov, G. V. Biofizika 38(3):507-510, 1993.
A PEMF system was used in the treatment of 283 eyes (177 patients) with macular damage of the retina. The treatment had a positive influence on the pathologic process in the eye, with stability of the benefit after treatment. In 152 eyes, visual acuity remained unchanged, improved in 131 (46%). Stabilization of the process was confirmed by objectively measured improvement indices. In 72 eyes, the results of treatment were followed up for 6 yr, confirming the effectiveness of this method of treatment.
Long-term observations have found the need to repeat the course of treatment every 3-5 months (within a year) to prevent progression of the damage. Unfortunately we do not have information on the characteristics of the magnetic system used. Nevertheless, this study demonstrates the need for longer-term treatment to get sustainable results. When one considers the length of time it takes to regenerate neural tissues, this long-term personal, home use approach makes sense.
The impulse electromagnetic field in the treatment of dystrophic lesions of the retina. Skrinnik, A. V.; Kovalchuk, A. S. Oftalmol Zh(8):459-462, 1989.
Since the general circulation and pumping of the heart affects circulation through the whole body, it is important to balance and restore the overall circulation, not just the circulation of the eyes. Also, glaucoma tends to be more common in people as they age. So, central general circulation, diastolic and pumping functions of the heart, reactivity of the heart muscle, microcirculation and biological age of the cardiovascular system were studied in 66 elderly patients with hypertension and ischemic heart disease. The patients received systemic magnetic therapy which produced a protective effect against aging as shown by improved microcirculation, heart muscle function, and central circulation.
The characteristics of the geroprotective action of magnetotherapy in elderly patients with combined cardiovascular pathology. Abramovich SG, Fedotchenko AA, Koriakina AV, Pogodin KV, Smirnov SN. Vopr Kurortol Fizioter Lech Fiz Kult. 1999 Sep-Oct;(5):7-9.
Indirectly, other actions of PEMFs on the eye can be taken as demonstrating repair and reduction of inflammation in the eye in general as well as specifically in glaucoma. Fifteen patients with surface infections of the cornea due to a foreign body in one eye were treated with PEMF (50 gauss, 50 Hz) for 9 minutes and the topical antibiotic gentamycin before and after removal of the foreign bodies. This treatment promoted suppression of the inflammatory reaction of the eye and accelerated corneal tissue regeneration. This study establishes that PEMFs can accelerate healing of not only inflammation but also eye tissue damage.
Verzin AA. Action of gentamycin against a background of magnetotherapy of the anterior chamber in a traumatic infected erosion of the cornea. Antibiotiki. 1982 Oct;27(10):774-5.
While most of our emphasis has been on the use of PEMFs, based on the studies we found, I also reviewed a study on the effect of a constant magnetic field (about 200 Gauss) on the fluid flow parameters of the eye. This was in 20 healthy controls and 29 patients with glaucoma. The magnet (a ring with internal diameter of 2.2 cm and external diameter of 5.1 cm) was applied to the external corner of the orbit so that the optical axis of the eye within the center of the magnetic field.
Duration of exposure was 3, 5, or 10 minutes. Exposure to the magnetic field caused a decrease of the intraocular pressure and decrease of the rate of tear secretion. The changes were more pronounced after 5-min exposure, while 10-min exposure did not cause significant changes in the fluid flow properties of the eye. From this study we do not know how frequently these exposures should happen and what the long-term benefits would be expected to be. Nevertheless, there appears to be benefit from even using static magnets of the right circular configuration.
PEMFs have been shown in several research studies to have a positive impact on the glaucoma process, from potential to initial to later stages. Greater benefits are expected to be seen in earlier stages. PEMFs affect the flow of fluids in the eyes and therefore the intraocular pressures by decreasing inflammation, inducing the right kind of nitric oxide, improving circulation, particularly to the retina, and by probably also helping to stimulate repair of the nerve damage in the retina.
While most of the studies were short term, they still showed significant benefits to improving the function of the eye and slowing retinal damage and visual loss. I would recommend that anybody using PEMFs to treat their pre—glaucoma, increased ocular pressure and vision loss related to glaucoma, should do so daily for extended periods of time until it can be established that the pressures and the visual changes are stable for at least 4 to 6 months before discontinuing or reducing the frequency of PEMF treatments.
While very weak PEMFs may produce a benefit, these have not been studied. Most of the magnetic field strengths studied ranged from 80 to 330 Gauss (8-33 milliTesla). It doesn’t appear to matter that much which frequencies are used. This is because there was a lot of variation within these as well.
I don’t see a reason why PEMFs cannot be used with medical therapies for glaucoma. Perhaps reducing the need for laser treatment and/or surgical procedures. It may be challenging to get conventional doctors to agree to allow an individual to use magnetic therapy as a sole approach. However, since glaucoma is typically a gradually progressive process, and there is significant inter-individual variation in response, not only to magnetic fields but also to other therapies, initiating PEMF therapies as a sole therapy with close monitoring is probably worthwhile.
Obesity and diabetes have become a worldwide health problem in both males and females and across most age groups. People who are obese, compared to those with a normal or healthy weight, are at increased risk for many serious diseases and health conditions, including:
Obesity is defined by a body mass index (BMI) of 30.0 kg/m2 or higher; overweight is 25.0 to 29.9 kg/m2 BMI. Body mass index is a measure of a person’s weight in kilograms (kg) divided by the square of the person’s height in meters (m2). Gaining weight to the point of obesity is a gradual and progressive process. The negative effects, especially related to inflammation, are present even in people who are overweight and not obese by the BMI definition. In other words, inflammation increases with increasing weight.
For example, in children 8 to 16 years of age, being overweight is associated with higher inflammation markers found through common blood tests, such as C-reactive protein (CRP). This indicates a state of low-grade systemic inflammation even in overweight children. In adults, there is also evidence of increasing inflammation with increasing weight (You). The following discussion relates to overweight and obesity alike even though most of the information relates to obesity.
Even though the best goal is to prevent obesity in the first place, this is a very challenging problem, particularly in Western civilization where the factors contributing to obesity are much more widely prevalent. When someone is already overweight or obese, pulsed electro magnetic field (PEMF) therapy could be an important strategy to reduce or reverse a number of the problems caused by being overweight or obese. Using pulsed electro magnetic fields (PEMFs) is a safer, less toxic, and more health-producing approach than most other available approaches.
Many of the problems associated with obesity are from the factors that cause obesity, most notably:
And, obesity causes its own problems, including:
However, what is relatively unknown about the effects of obesity—also called adiposity—is that adipose (fatty) tissue is actually metabolically, physiologically, and immunologically very active by itself.
Normal amounts of fatty tissue function as an energy-storage organ. We now know that fatty tissue is also an endocrine “organ” producing numerous molecules called adipokines or adipocytokines that can act as hormones. (Endocrine refers to the system of glands in the body that produce hormones, those chemical messengers that help regulate growth, sexual function, and other processes.)
Furthermore, the adipokines include leptin, adiponectin, visfatin, resistin, apelin, etc. Adipokines affect and control metabolic processes throughout the body. (Metabolic processes involve the chemical reactions in the body that produce energy and make cells work.) Since obesity is associated with a higher than normal amount of fatty tissue, these hormones are produced in higher amounts and have a significant undesirable impact on metabolism. Further, these adipokines interact with insulin, contributing to insulin resistance and subsequently adult type 2 diabetes (Singla).
The distribution of fat in various parts of the body influences metabolism differently than the effects of total body fat stores or the fat under the skin —called subcutaneous adipose tissue, or SAT. The accumulation of fat inside the belly—the visceral fat compartment—seems to play a larger role in increasing the risk of inflammatory conditions, insulin resistance, diabetes, and cholesterol problems (Gasteyger).
Fatty tissue is composed of fat cells called adipocytes. The adipokines or adipocytokines produced by afat cells play an important role in weight regulation. Adipokines or adipocytokines are in a class of molecules called cytokines. Cytokines are small proteins released by cells that have a specific effect on interactions between cells, on communications between cells, or on the behavior of cells. Cytokines can be proinflammatory; that is, they promote and increase inflammation. Or they can be anti-inflammatory; that is, they suppress and reduce inflammation.
Adipocytes are the main source of leptin. Leptin has several roles, including growth control, metabolic control, immune regulation, insulin sensitivity regulation, and reproduction. Its most important role is in body weight regulation. Although secreted from fat stores, it has a direct action on the brain. Leptin has a more important role than insulin has in the brain’s control of energy balance. Both insulin and leptin act on the brain. Leptin is the chief regulator of the brain-gut axis. It causes the brain to signal a sense of satiety (fullness) that decreases our desire for food. Leptin deficiency increases appetite dramatically, leading to significant obesity over time. The resistance of Leptin may act similarly.
Leptin is also important by promoting inflammation. The inflammation in fatty tissue further increases leptin levels, in turn increasing other cytokines, leading to even further fat cell development—a vicious circle. The leptin and cytokines in fatty tissue increase inflammation locally, and they are also secreted into the circulation to cause inflammation throughout the body Leptin also has a number of other negative actions on immune function, besides stimulating the release of inflammatory cytokines. (Singla).
Resistin is another important contributor to insulin resistance, hence its name. Blood levels of resistin are higher than normal in people with obesity. It is also proinflammatory, releasing cytokines.
Adiponectin is an anti-inflammatory cytokine produced by adipocytes, working to balance the effects of the pro-inflammatory cytokines. It enhances insulin actions and helps control glucose levels. The amount of adiponectin in the body decreases with increasing obesity. Adiponectin also seems to have protection benefits for the vascular system, which carries blood to the body through the blood vessels. As adiponectin levels decrease, serum triglyceride and glucose levels increase, leading to increased cardiovascular risk. Lower adiponectin levels also seem to increase risk for osteopenia/osteoporosis and fatty liver.
Adipocytes in the obese fat cells under the skin (SAT) secrete several proinflammatory cytokines (TNF-α and IL-6) and chemokines. All secreted cytokines, chemokines, and adipokines not only add to but also maintain inflammation locally and throughout the body. Proinflammatory chemokines in the SAT attract immune cells from the rest of the body to the SAT, compounding inflammation, and themselves secreting additional proinflammatory molecules. These immune cells attracted to the SAT are even more inflammatory in the SAT than they were at their sources. As a result, there are more inflammatory cytokines in SAT than in the blood. From here, they recirculate to lymphatic tissue outside the SAT to reduce systemic immune responses even further.
Cytokines in obese fatty tissue increase breakdown of the fat cells (called lipolysis). Excess fat breakdown in the SAT itself leads to problems that promote DNA damage and SAT inflammation. This breakdown also generates free fatty acids (FFAs) and lipids, which enter the circulation and elevate FFAs in the blood. As a result, circulating FFAs and lipids induce further inflammation in the body—another vicious circle. FFAs also directly inhibit immune B lymphocyte function in the blood. Immune system lymphatic B cells play a crucial role in the defence of pathogens (bacteria, viruses, fungi); when they detect such an intruder, they produce antibodies that help to combat the enemy.
Natural killer (NK) cells – another form of immune white blood cell – are significantly increased in the SAT compared to the blood in people with obesity. These SAT NK cells release Interferon gamma, which is a cytokine that plays an important role in inducing and regulating an array of immune responses, adding to local inflammation and insulin resistance. NK cells also kill local macrophages. Macrophages are a type of white blood cell of the immune system, normally inside cells, that engulf and digest cellular debris, foreign substances, microbes, cancer cells, and other abnormal substances. In other words, macrophages help with local immunity. This is yet another way that obese SAT reduces immune function. These changes together weaken the ability of obese tissue to repair itself following infection or damage.
The immune cells that infiltrate the obese SAT generate certain autoimmune antibodies that increase inflammation. These autoantibodies may be damaging, leading not only to enhanced local inflammation but also to physical changes in the fatty tissue, including scar tissue formation and thickening of the skin. The antibodies can also impair normal, and necessary, adipocyte function and nutrient metabolism and aggravate obesity-associated conditions. These autoimmune antibodies are also released into the circulation causing additional damage throughout the body (Frasca).
The bottom line with this preceding information is that overweight and obesity is associated with a significant amount of inflammation, not only in the fatty tissue itself but also throughout the tissues of the body. This source of inflammation from excess fatty tissue is one of the major contributing factors to arthritis, vascular inflammation, glaucoma, cataracts, vascular dementia, and aging effects on skin, bone, and muscle. All of these are seen more frequently in obese individuals and increasingly accumulate with age, that is, the longer that obesity is present.
PEMFs may help in several ways:
PEMFs reduce inflammation by lowering many proinflammatory tissue cytokines. These include reduction of the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8, (Vincenzi, 2017) and NF-kappaB (Vianale). But very low intensity PEMFs between, 3 and 5 microTesla, do not affect some of these tissue cytokines (de Kleijn). I mention these cytokines only for information, not for emphasis, because you may read elsewhere about how PEMFs affect these cytokines in health situations other than in the setting of obesity. In other words, PEMFs have broad actions on reducing pro-inflammatory cytokines.
Stem cells obtained from the fatty tissue are often used in stem cell therapies. Fat-derived stem cells (called ADSCs) are used by the body to make more fat cells. As these stem cells grow, they release cytokines. A study was done in rats to determine the impact of PEMFs on the production of adiponectin and lectin cytokines by their ADSCs. Fatty tissue was obtained from rats. The stem cells from the fat were isolated and cultured. PEMF stimulation was started 24 hours after incubation of the stem cell culture. The PEMF (7 Hz at 30 mT/300 Gauss) inside the cell culture was applied 4 hours a day at 24-hours intervals for 3 consecutive days.
The researchers found that PEMF application to ADSCs originating from obese adult male rats improved the adiponectin level; ADSCs from females showed lower leptin levels (Baranowska). Both results were in the desirable direction of increasing adiponectin levels and lowering leptin levels.
Certain PEMFs may prevent stem cells in soft tissues (in cartilage, bone, bone marrow, or fat) from becoming fat cells. In another study, 7.5 Hz PEMFs at 4000 Gauss were used for 2 hours a day for 15 days in mice [Du]. Extremely low frequency PEMFs helped prevent stem cells from turning into fat cells, called fat cell differentiation. Differentiation is when another type of cell acquires features of another type of cell. But, the PEMFs had no effect on the growth and function of the stem cells in making other types of cells. This suggests that stimulation of even undifferentiated soft tissue stem cells—not only in the abdomen but also in other parts of the body—may decrease the production of fat cells.
In another study, a 2-Gauss PEMF was combined with micropressure in 28 women and men over 6 weeks (Beilin). There was a reduction in waistline of more than 6 centimeters (about 2 and half inches) after 12 sessions. Researchers assumed this was due to a reduction in the size of fat cells.
A study was done on obese and nonobese females to see if PEMF stimulation to the brain could impact obesity by reducing appetite. A medium intensity of 45 mT PEMF with alpha range frequencies was applied across the head near the temples for 10 to 15 daily sessions. Six months after treatment, the study group showed an average reduction in body mass index by 5.9 kg/m2 and the nonobese group by 2.5 kg/m2. Lipids returned to normal in 70% of the participants. In another study by the same group, 84 adolescent girls saw an average reduction of body weight by 9 kilograms (almost 20 pounds) after 3 months (Bolotova).
Obesity is a challenge not only in terms of the causes but also in the consequences. Beyond the well-known consequences of obesity—hypertension, heart disease, gallbladder disease, arthritis, sleep apnea—less known is the major importance of inflammation associated with obesity not only in the obese tissues themselves but also throughout the body. This inflammation is associated with increased production of inflammatory cells—cytokines/adipokines, chemokines, and autoimmune complexes—in the fatty tissue itself and throughout the body.
PEMFs have been shown to reduce inflammation in many conditions through numerous mechanisms, including the inflammation associated with obesity. Since the visceral/abdominal fat compartment is the greatest source of inflammation with obesity, application of PEMFs to the abdomen covering a wide enough area with a sufficient intensity applied daily to anybody of any level of obesity is expected to significantly help with existing inflammation and with preventing the damaging consequences of the secondary inflammation throughout the body. A better option would be to apply sufficient intensity whole-body PEMFs to help not only visceral, abdominal, fat and the fat under the skin but also the systemic effects of the inflammation caused by any excess fat.
There is more information on the effects of PEMFs on inflammation and obesity in my book, Power Tools for Health.
A treatment discussion about osteoporosis or osteopenia is not complete without considering electromagnetic stimulation of the bones. Nutrition, exercise, hormone balancing, and supplements are critical to adequate bone formation. However, they are often not enough. There are many circumstances where these approaches are inadequate or not possible; even when these methods are suitable, adding electromagnetic stimulation enhances the potential benefits and long-term results. This means that multiple approaches are necessary to deal with osteoporosis/osteopenia adequately.
Electromagnetic stimulation is a safe and effective way of enhancing bone formation. Pulsed electromagnetic field (PEMF) therapy can, on its own, be very effective for stimulating various repair processes in the body. Therapeutic magnetic fields can stimulate bone healing independent of other approaches. EMFs penetrate bones without any blockage, meaning they can stimulate the entire volume of the bone in ways that beat almost any other approach. Nutrition, hormones, and supplements saturate the bones and provide the “bricks and mortar” to build new bone. By themselves, these still require additional energy to effectively create new bone structures. PEMFs provide this energy to more effectively use these building blocks. This is why I routinely recommend PEMF stimulation to help with bone building in osteopenia/osteoporosis.
Evidence for the use of PEMFs in osteopenia/osteoporosis comes from a number of sources. This includes evidence from human and animal experimental effects that is specific for osteopenia/osteoporosis. On the other hand, there is an even greater amount of evidence on the effects of PEMFs on bone healing and bone formation (osteogenesis), less specific to osteoporosis itself.
Yale University School of Medicine studied the use of PEMFs in arthritis, but also found that they could be useful in the treatment of other bone disorders, including osteoporosis.
One researcher who helped develop an FDA-approved bone healing device showed that PEMFs had a profound effect on a large variety of biological systems, especially bone.
An orthopedic research team at Brown University found many therapeutic effects of electric and magnetic fields in the repair of connective tissue. (Bone is considered it a connective tissue.) The most widely studied applications are for bone repair and acceleration of the healing of fresh fractures, delayed and non-unions, incorporation of bone grafts, osteoporosis, and osteonecrosis. These fields even improve repair of cartilage and soft fibrous tissues. Basically, PEMFs accelerate extracellular matrix synthesis and tissue healing. PEMFs repair bone fracture non-union and enhances bone tissue formation, through enhancement of the formation of calcium phosphate crystal seeds in the bone.
Stress fractures are a common injury in athletes. They are most commonly seen in the lower extremities, especially with running. Stress fractures result from repetitive, cyclic loading of bone which overwhelms the reparative ability of the skeletal system. Typical treatment options include rest and stopping the activity. Some stress fractures are at risk for complications of healing. Women are more likely to have stress fractures. They are often related to eating disorders, amenorrhea and osteoporosis, or the female athlete triad. PEMFs in this situation can be very helpful in both treatment and prevention.
Researchers at Loma Linda University in California found that PEMFs increase bone cell growth.
In Italy, researchers studied the effects of PEMFs in post-menopausal osteoporosis, following removal of the ovaries in rodents. They looked at the effect of the intensity of PEMFs used 1 hour per day for 4 months. They found that PEMFs slowed down bone mass loss, within 10% of normal density. Higher intensity PEMFs produced no bone loss at all. PEMFs at a higher intensity stopped bone decay altogether, so that the bones were very similar to normal animals.
The Department of Orthopedics at the State University of New York, Stony Brook, looked at PEMFs in preventing osteoporosis from lack of use of bones. Non-use of bones could result in a 13% loss of bone as compared with exercised bones, even over a two-month period. Even one hour per day of PEMFs induced bone formation. The bone formation response was caused by a decrease in breakdown of the hard outside and inside surfaces of bone and stimulation of both outside and inside new-bone formation. This data tell us that short daily periods of exposure to appropriate PEMFs positively influence the cells responsible for bone-remodeling.
The Department of Orthopedic Surgery at the University of Occupational and Environmental Health in Kitakyushu, Japan looked at long-term PEMF stimulation on bone. Having ovaries removed and sciatic nerve damage can induce osteoporosis. PEMF stimulation in this situation was compared to naturally-aged bones. PEMF stimulation increased bone volume and bone formation in the central compartment of osteoporotic legs. These findings suggested that PEMF stimulation prevents bone loss of osteoporotic legs. There was also an increase in bone marrow blood flow.
PEMFs were studied in osteoporosis around the knee in individuals with chronic spinal cord injury. It is known that lack of movement can create osteoporosis. It is also possible that spinal cord injury itself may accelerate the problem. Even with a spinal cord injury more than 2 years old, osteoporosis can be improved. When bone mineral density (BMD) is compared before treatment with 3 months, 6 months, and 12 months after treatment, improvement and bone density is found.
At 3 months of treatment BMD increased in the stimulated knees by 5% and declined in the untreated knees by 6%. At 6 months after treatment ended, BMD returned to near baseline values and at 12 months both knees had lost bone at a similar rate to 2% below baseline for the stimulated knee and 3.6% below baseline for untreated knee. The biggest changes were seen close to the area of treatment. The stimulation appeared useful in impeding osteoporosis for the period of the stimulation. Reversal after the end of stimulation is not unexpected. This indicates that treatment of osteoporosis is long-term, if not lifelong. It also indicates PEMF therapy should not just be directed at a single bone location, but is best if the whole body is treated.
Furthermore, at the University of Hawaii, PEMFs were studied in the treatment of post-menopausal (osteoporosis-prone) forearms. Evaluations were done during and after treatment of 10 hours daily for 12 weeks. BMD increased significantly in the immediate area of the field during exposure and decreased during the following 36 weeks after stimulation stopped. BMD benefits appeared to last for years after 3 months of stimulation. The same researchers looked at BMDs in the opposite untreated arm of postmenopausal women. A similar but weaker response occurred in the opposite arm, suggesting a “cross-talk” effect on the non-treated forearms. They thought that properly applied PEMFs for whole-body use could prevent and treat of osteoporosis throughout the body.
At the WHO Collaborating Centre for Metabolic Bone Disease at the University of Sheffield Medical School in the UK, PEMFs were studied in limb lengthening surgery patients. Limbs were lengthened comparing active PEMF coils and inactive coils. Bone loss in the segments of bone distal to the lengthening sites was seen in both groups but was greater in the group with inactive coils between 23% and 33% after one and two months, respectively, vs active coils by only 10% at 2 months. Differences were greater at 12 months after surgery, growth reduced by 54% and 13%, respectively. So, in this situation, stimulation had a dramatic effect on preventing bone loss.
To summarize, PEMFs have been shown in a wide variety of research to help bone repair and recover after injury, and also to prevent and treat osteopenia and osteoporosis.
Long-term whole-body treatment is recommended. Furthermore, osteopenia/osteoporosis are not just limited to the hip and spine. Bone mineral density testing is typically only done on the lumbar spine and the hip. Clearly, osteopenia/osteoporosis involve the entire skeleton with increased risk of fractures anywhere in the body, not just the spine and hip.
PEMFs cannot be relied upon as a sole treatment. They need to be combined with adequate nutrition, supplements, exercise, and proper hormone balancing or replacement. I have several patients who have demonstrated positive impacts on their bones using these combinations of treatment, and without the need to resort to drugs like Fosamax.
Osteoarthritis (OA) affects about 40 million people in the USA. In this post, we discuss what causes OA, what traditional therapies are missing, and explore hugely promising new research that shows the far-reaching benefits of PEMFs for OA.
Joints are complex structures. They include muscle, ligaments, and tendons, as well as blood, nerve and lymphatic supply. Joint cartilage is a connective tissue that is not able to repair itself. This is because it does not have a good blood, nerve or lymphatic supply. Moreover, it’s because cartilage cells do not replace themselves easily. For these reasons, either high-energy low-level trauma and extensive stress on the joint lead to the development of osteoarthritis.
It often takes years for osteoarthritis to develop, and that is why it is most common in the elderly. Changes in the fundamental structures of the joint tissues and the presence of inflammation play a key role in OA. They induce an imbalance between tissue growth and tissue breakdown – favoring breakdown. Connective tissue cells also play a role in OA because they secrete a wide range of inflammatory molecules.
Currently, in conventional medicine, therapies for OA are aimed at improving the quality of life. They reduce pain and swelling and not disease progression. Therapies primarily focus on medications or procedures. Unfortunately both of these have drawbacks (and potentially long-term side effects). There is limited effectiveness in OA, because of the degree of underlying impairment of joint cells. This is prevalent with the presence of an extensive tissue breakdown environment.
Safe and non-toxic alternative therapies are necessary. Pulsed electromagnetic field (PEMF) stimulation of tissue is a relatively new approach to treating OA, emphasizing stimulation of tissue repair. Most studies to date have shown that PEMFs are effective in treating pain and improving function in OA, typically, at 8 weeks following treatment, and with virtually no toxicity or side effects.
Previous research both on living and nonliving tissues shows significant benefits of PEMFs in various models of OA. Various researchers have found positive effects of PEMFs in cartilage cells and tissue cells with field intensities between 15 and 30 Gauss (1,500 to 3,000 microTesla), often using a 75 Hz signal. In these studies PEMF stimulation increased cell growth and extracellular matrix (ECM) production.
ECM molecules include collagen II, glycosaminoglycans (GAGs), and proteoglycans (PGs), IL-1b and IGF-1. PEMFs inhibited inflammation producing prostaglandin E2 (PG-E2) production, helping to reduce inflammation, and increased joint capsule cells.
Breakdown of the joint capsule by the presence of inflammation and a reduction in support molecules is critically important in the development of OA. In addition, local joint tissue stem cells, proteoglycan (PG) molecule (not PG-E2) and collagen synthesis increased with PEMFs. Proteoglycans provide lubrication to joints. Stem cells help to repair and regenerate tissues. Collagen forms the basic structure of the soft tissues of the body, including joints. All of these molecules are necessary to maintain joint health.
One study showed positive results between PEMF of 5-20 Gauss field intensity and duration of exposure of 1-24 hrs and PG production regardless of frequencies between 2 – 110 Hz, even if 4-24 hrs after stimulation. On the other hand, another study showed no benefit from 16.7 Hz PEMF stimulation. An important consideration in looking at these results is that it is not always certain what the value is from results on nonliving tissue/molecular laboratory studies, when it comes to considering a living human. Studying living tissue is more relevant directly to human needs.
A new study has surfaced, which I consider to be one of the most important studies on OA I have seen in years, that finally shows us that there is much more happening with PEMF therapy in OA than simply improving function and reducing pain. Reducing pain and improving function are very important, but unless the underlying changes in the tissues that are part of the OA process are actually affected directly, then the underlying problem continues to progress and more aggressive measures will need to be taken years later, including joint replacement.
A right and best approach would be to prevent progression of the OA process at the earliest stages possible. The later the stage and the more severe the problem, the more challenging it is to treat no matter what you do, short of joint replacement. We already know that people with chronic joint pain will use large amounts of nonsteroidal anti-inflammatories (NSAIDs), such as aspirin and ibuprofen, chronically, often resulting in gastrointestinal bleeding. This complication or side effect of NSAIDs unfortunately causes 30,000 deaths per year in the US alone. This is an unacceptable consequence of a poor chronic treatment option in OA, further emphasizing the need for different way of looking at the treatment of OA.
The new study, done in guinea pigs, which develop arthritis very quickly, often with fairly severe arthritis at about 2 years of age, and evidence of arthritis beginning between 3 to 6 months of age, shows that the fundamental underlying process of progression of arthritis can be slowed or stopped, even in the presence of fairly severe arthritis (OA). Guinea pigs have a much shorter lifespan and are therefore often used as a research model for the development of arthritis in humans. So, whatever happens in guinea pigs is very likely to happen in humans, but over longer periods of time. Guinea pigs are already considered to be “old” at about 21 months of age.
The guinea pigs were studied in 3 groups, with 2 groups using 75 Hz or 37 Hz at a peak intensity of 15 Gauss , and treated for 6 hours a day for 3 months, and another no PEMF exposure group (sham). At their deaths, the joints were examined at autopsy for various components of joint health and breakdown.
The sham group showed increased cartilage surface degeneration compared to the two PEMF groups. In other words, their arthritis got significantly worse in the short 3 months of the study. On the other hand, in the PEMF groups, cartilage thickness was significantly greater. The PEMF group also had much lower evidence of cartilage damage and degeneration. Bone thickness underlying the joint capsule typically increases significantly in OA. This is why the whole joint area becomes much enlarged compared to normal.
PEMF treatment with both frequencies significantly reduced bone thickness in almost all areas of the knee. This was compared to the sham group. Both PEMF treatments were able to counteract OA progression, by acting on both cartilage and the underlying bone. Both frequencies maintain cartilage structure, PG content, cell appearance and general cell integrity compared to the sham group. Finally, both PEMFs significantly reduced cartilage surface irregularities. This resulted in greater cartilage thickness, with 75 Hz being better than 37 Hz.
Even in those animals already at the later stages of OA, PEMFs were still effective at counteracting the progression of OA especially in cartilage breakdown, and less on cartilage thickness, compared to earlier stages of OA. Other aspects of the study showed that the beneficial PEMF effects were not much different between 75 Hz and 37 Hz for most cartilage components even with more severe OA.
In the general PEMF literature on the treatment of OA, there are no specific indications about the length of exposure, duration, and how long PEMF should be applied. The laboratory setting saw the same PEMF reactions were seen after 4, 9, and 24 hours of stimulation of cartilage. In a live tissue study, a cartilage response was seen when 7 to 9 hours per day of treatment were used at 60 Hz.
In other studies, PEMFs at 75 Hz, 15 Gauss at 6 hours per day obtain better clinical outcomes, with decreased use of NSAIDs and reduced knee pain. Daily exposure times longer than 6 hours may not necessarily increase cartilage preservation. These are also and generally harder to adhere to. Other studies found an increase in the natural growth factors and a decrease in the inflammatory markers in the joint fluid after PEMF treatment, helping to preserve joint health.
The results of this study seem to favor 75 Hz versus 37 Hz. However, other research indicates that it is unknown whether other signals can produce similar results in reducing the progression of arthritis. There is a solution for those individuals wanting to replicate the most beneficial frequencies in this study. There are devices on drpawluk.com that will allow choice. The downside of using specific devices in this category is that they require electrical current. On the other hand there are battery-operated devices that do allow use throughout the day. This could be during activity by being battery operated. As the above study showed, the best results were obtained with many hours a day of daily use.
My own experience with arthritis and joint inflammation is that even though a signal may not be 75 Hz, it could still be very useful for existing arthritis treatment. While the study stopped at 3 months, I believe that most people with arthritis will need to continue therapy for the rest their life in order to reduce or prevent progression of their arthritis. Whether the arthritic process can be reversed is still subject to further research.
The above research shows us that PEMF therapies can be a very important tool for the treatment of arthritis. Most adults will develop arthritis during their lifetime, with it becoming progressively worse as the person ages. Many people already have evidence of arthritis in their 50s, often in their 60s and definitely beyond that. This is one of the reasons that joint replacements have become so common. So, the use of PEMFs even with mild arthritis will decrease the progression. It will probably allow the person to avoid procedures and eventually joint replacement. What has to be accepted by anybody with arthritis is that treatment will have to be lifelong, whether the arthritis is mild or severe.
In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. Veronesi F, Torricelli P, Giavaresi G, Sartori M, Cavani F, Setti S, Cadossi M, Ongaro A, Fini M. Orthop Res. 2014 May;32(5):677-85.
Enuresis or bedwetting is a common childhood condition. Although the problem may also persist into adulthood in some cases. There is similarity between urinary symptoms in childhood. These include nocturnal enuresis (NE) and overactive bladder (OAB) symptoms, and OAB in adulthood.
Normally, mammals urinate less frequently during sleep than when awake. This is affected by 3 factors. Firstly, decreased arousal (wakefulness or alertness levels) in the brain. Secondly, decreased urine production in the kidneys. Thirdly, an increased functional bladder capacity (FBC) during sleep. People with enuresis and nighttime urination show impairment in these 3 factors.
Many children and adults with enuresis wet their beds not because their bladders are full. Rather, it is because they suffer from nighttime bladder overactivity. There is great overlap between nighttime enuresis and urgency or urge incontinence.
There is increasing evidence that these mechanisms can be attributed to an underlying brainstem disturbance. In total, there are four neuronal networks spreading their communications to many areas of the brain. All relate closely to arousal and sleep function. Among the four networks, the “fight/flight” noradrenaline network is the system most typically responsible for arousal. The LC is activated by the stimulation by the stimulation of a filling or full bladder while the person is in deep sleep. The LC overlaps both functionally and anatomically with the brainstem/pontine micturition center. This coordinates the reflex to urinate, called the micturition reflex. Both the LC and the micturition center are located next to each other in the brainstem.
Growing evidence suggests that basic or primary enuresis is a maturational disorder of the central nervous system. It comes with a lack of arousal and lacking inhibition of the micturition reflex. Patients with nocturnal enuresis are characterized by abnormally increased excitability. Furthermore, the have reduced inhibitory processing in the part of the brain controlling muscle movement. This could also contribute to the development of nocturnal enuresis.
Although most children will outgrow enuresis, a wait-and-see approach is not appropriate if bedwetting is affecting the child’s self-esteem. Understandably, everyone –especially adults –suffering from enuresis eagerly searches for solutions.
Common treatments include the following: Firstly, pharmaceuticals (Desmopressin, antidepressants, anticholinergics). Secondly, urotherapy (advice regarding fluid intake and regular voiding habits). Thirdly, enuresis alarms. Less common but still somewhat accepted treatments include acupuncture, biofeedback, and electrical stimulation.
Electrical stimulation has been used for more than a century as an alternative therapy for adult urinary syndromes. These include as urinary incontinence, urgency, frequency and urinary retention. There are many forms of electrical stimulation. This includes interferential (IF) current via transcutaneous application, frequency-specific electrostimulation, and sacral nerve stimulation (neuromodulation).
Though most electrostimulation has shown value in treatment-resistant cases, it remains a somewhat invasive and potentially uncomfortable option. Magnetic stimulation, however, is a new technique for stimulation of the nervous system noninvasively.
Ultimately, magnetic stimulation has also been shown to be a relatively simple and effective mode of neuromodulation. This is common in various types of voiding dysfunction and produces results comparable with those from sacral nerve stimulation (SNS). Magnetic stimulation is believed to have the same underlying effect as SNS in that it generates an electrical field that results in nerve stimulation (considered neuromodulation). Unlike direct electrical stimulation, which decreases in intensity due to resistance in the tissues, a magnetic field penetrates tissues without alteration. Therefore, a greater effect can be achieved on tissues at a greater depth. This comes with little to no discomfort at the point of application.
This is especially important to directly improve all the muscle and nerve tissues of the bladder, which are the cause of OAB. Electrostimulation works indirectly by affecting the spinal nerve function controlling the bladder. Magnetic stimulation accomplishes both tasks, for a more complete solution.
Magnetic field therapy is thus a more acceptable and valuable form of electrical therapy, especially for children, because it is relatively painless, noninvasive, and free of side effects. It is also convenient because the magnetic fields pass completely through clothing, and do not cause children the distress of having to undress to attach electrodes at every stimulation session. In addition, electrostimulation is often uncomfortable, with a prickling or stinging sensation. Therefore, I believe that magnetic stimulation for children is more appropriate and effective than SNS and other forms of electrical stimulation.
Transcranial bitemporal magnetotherapy (TcMT) was studied in children with nocturnal enuresis (NE). Children (age 6 to 14 years) were divided into two groups, with a control group receiving sham/placebo treatment and basic therapy. Basic therapy was a standard anti-cholinergic mecication. The study group received basic therapy in combination with active TcMT. The results showed that TcMT improves the clinical effect in NE patients 2-fold over what is seen with pharmacologic treatment alone.
In a different study, a portable PEMF device was used in women with mixed incontinence and objective measures of bladder function. After 2 months of portable magnetic stimulation (applied over the pubic bone day and night) there were significant decreases in voiding frequency, nighttime urination and pad use. Of this group, 78% reported improvement in symptoms after magnetic stimulation with an average success rate of 42% versus the sham group at 23%.
The same group looked at the use of this same type of PEMF stimulation in young females with NE. This relates to women with incontinence, because frequent nighttime urination is a common distress with OAB. The young females (range 6-14 years old) were randomly assigned to either active magnetic stimulation or sham stimulation. As above, they wore their portable stimulators continuously day and night for 2 months. In the active treatment group, the number of weekly enuresis episodes decreased significantly compared to sham, from 3.1 to 1.3 per week.
Three girls from the active group were completely dry and four were significantly improved. Also, in the PEMF group there was a significant increase in bladder volume at the time of a strong desire to void as well as an increase in bladder volume at that void. The increase in volume indicates that the bladder is able to be stretched more before the urge to urinate is perceived.
It is now established that primary nocturnal enuresis is a complex disorder involving the following components, among others:
Current treatment approaches fail a good part of the time because they generally focus only on one aspect of the condition. Pharmacological management (especially antidepressant use) carries with it many risks, especially in children. The enuresis alarm is only effective about a third of the time and focuses primarily on the bladder itself. Limiting fluids in the evening may be somewhat practical in decreasing the amount of urine involved in the bedwetting, but does not help to train the brain and nervous system.
So, it appears that pulsed electromagnetic field stimulation techniques address the above components the best, and would have a larger, untapped role in the treatment of both childhood and adult enuresis. Clearly, invasive techniques and those that require placement of electrodes are not desirable behaviorally. Since this condition has to be considered a long-term treatment process, while the brain achieves maturity, the least invasive, intrusive and potentially toxic therapeutic approach should be used as a priority.
It appears that the stimulation system that meets these criteria the best is magnetic field therapy. There are many kinds of magnetic field therapy systems. These range from high intensity to low intensity. Furthermore, those that treat larger areas and only local areas. Even here, high-intensity pulsed electromagnetic field (PEMF) systems can be very effective, but have their drawbacks. The evidence cited above support the use of a low intensity, frequency-based PEMF system that has the flexibility to stimulate not only the bladder, but also the spinal cord, the brain stem, the frontal brain cortex, and the posterior tibial nerve at the foot.
A portable, battery-operated PEMF system can be easily and safely applied over clothing, including diapers, and worn throughout the day and night, until sufficient maturation of the nervous system and a reduction in the irritability or overactivity of the bladder occur. In addition, this type of therapy can be done in the home setting, without multiple trips to practitioners, in the case of electrical stimulation and acupuncture, or the frustration, discomfort or cleanup issues associated with nighttime alarms. Such a home use PEMF system was used in the study described above, achieving an almost 2/3 reduction in bedwetting episodes. But a higher intensity portable PEMF system, with more selectivity of frequencies, would be expected to achieve even better results.